Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

Пермский национальный исследовательский политехнический университет

Образовательный центр г. Когалым

УТВЕРЖДАЮ

Проректор

по образовательной деятельности

А.Б. Петроченков

"29" июня 2023 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Дисциплина Физика и гидродинамика пластовых систем

Форма обучения Очная

Уровень высшего образования Специалист

Общая трудоемкость (час., (ЗЕТ))

Специальность 21.05.02 Прикладная геология

1. Общие положения

1.1. Цели и задачи дисциплины

Цель учебной дисциплины – формирование знаний и представлений о процес-сах фильтрации нефти, газа и воды в горных породах.

- формирование знаний о процессах, происходящих в нефтяных и газовых залежах при их разработке;
- формирование умений описывать процессы фильтрации;
- формирование навыков интерпретации материалов гидродинамических исследований скважин.

1.2. Изучаемые объекты дисциплины

- фильтрационные потоки;
- уравнения движения флюидов в горных породах коллекторах нефти и газа;
- способы интерпретации данных гидродинамических исследований сква-жин.

1.3. Входные требования

Не предусмотрены			

2. Планируемые результаты обучения по дисциплине

Компетенция	Индекс	Планируемые результаты	Индикатор	Средства
	индикатора	обучения по дисциплине	достижения	оценки
		(знать, уметь, владеть)	компетенции, с	
			которым соотнесены	
			планируемые	
			результаты обучения	
ПКО-4	ИД-1ПКО-	Знает методы решения	Знает методы и	Контрольн
	4	прямой и обратной задач	способы решения	ая работа
		подземной гидромеханики	производственных,	
			технологических и	
			инженерных по	
			объекту исследования	
ПКО-4	ИД-2ПКО-	Умеет использовать	Умеет использовать	Отчёт по
	4	результаты интерпретации	знания методов	практическ
		гидродинамических	исследований	ому
		исследований нефтяных и	геологических	занятию
		газовых скважин для	объектов для выбора	
		решения задач геологии	технических средств	
		месторождений нефти и	при выполнении	
		газа	производственных,	
			технологических и	
			инженерных	

			исследований	
ПКО-4	ИД-3ПКО- 4	Владеет навыками интерпретации материалов гидродинамических исследований нефтяных и газовых скважин	Владеет навыками проведения производственных, технологических и инженерных исследований в соответствии со специализацией	Зачет
ОПК-10	ИД-1ОПК- 10	Знает способы определения дебитов скважин при существовании линейного и нелинейного законов фильтрации пластовых флюидов	Знает процессы геологоразведочных и	Контрольн ая работа
ОПК-10	ИД-2ОПК- 10	Умеет выполнять анализ гидродинамических параметров продуктивных пластов, полученных при реализации различых методов исследования скважин	оперативные и текущие показатели производства, обосновывать	Отчёт по практическ ому занятию
ОПК-10	ИД-3ОПК- 10	Владеет навыками разработки предложений по управлению продуктивностью нефтяных и газовых скважин	Владеет навыками ведения учета выполняемых работ и разработки предложении по совершенствованию организации производства	Зачет
ОПК-11	ИД-1ОПК- 11	Знает основные положения руководящих документов, регламентирующих проведение различных методов исследования скважин	Знает требования стандартов и документов промышленной безопасности, регламентирующих порядок, качество и безопасность выполнения горных, горно-строительных и взрывных работ	Контрольн ая работа

ОПК-11	ИД-20ПК-	Умеет анализировать	Умеет контролировать	Отчёт по
	11	соответствие данных о	соответствие проектов	практическ
		проведении	на выполнение	ОМУ
		гидродинамических	горных, горно-	занятию
		исследований скважин	строительных и	3411111110
		требованиям отраслевых и	взрывных работ	
		локальных нормативных	требованиям	
		документов	стандартов,	
		Acres 11.02	техническим условиям	
			и документам	
			промышленной	
			безопасности	
ОПК-11	ИД-3ОПК-	Владеет навыками анализа	Владеет навыками	Зачет
	11	применимости	контролировать	
		существующих методов	соответствие проектов	
		решения прямой и	требованиям	
		обратной задач подземной	стандартов,	
		гидромеханики	техническим условиям	
		1	и документам	
			промышленной	
			безопасности,	
			разрабатывать,	
			согласовывать и	
			утверждать в	
			установленном	
			порядке технические и	
			методические	
			документы,	
			регламентирующие	
			порядок, качество и	
			безопасность	
			выполнения горных,	
			горно-строительных и	
			взрывных работ в	
			составе творческих	
			коллективов и	
			самостоятельно	

3. Объем и виды учебной работы

		Распре делени
		е по
Вид учебной работы	Всего	семест
	часов	рам в
	шеов	часах
		Номер
		семест
		pa

		7
1. Проведение учебных занятий (включая проведение		
текущего контроля успеваемости) в форме:	44	44
1.1. Контактная аудиторная работа, из них:		
- лекции (Л)	18	18
- лабораторные работы (ЛР)		
- практические занятия, семинары и (или) другие виды занятий	24	24
семинарского типа (ПЗ)	24	24
- контроль самостоятельной работы (КСР)	2	2
- контрольная работа		
1.2. Самостоятельная работа студентов (СРС)	64	64
2. Промежуточная аттестация		
Экзамен	36	36
Дифференцированный зачет		
Зачет		
Курсовой проект (КП)		
Курсовая работа (КР)		
Общая трудоемкость дисциплины	144	144

4. Содержание дисциплины

Наименование разделов дисциплины с кратким содержанием	Объем аудиторных занятий по видам в часах Л ЛР ПЗ		1	Объем внеаудиторных занятий по видам в часах СРС	
7й семе	стр				
Основы теории фильтрации					
Тема 1. Фильтрация пластовых флюидов.					
Модели грунта: идеальный и фиктивный					
грунты. Формулы Слихтера для определения					
пористости и просветности фиктивного					
грунта. Фильтрация как особый вид движения					
жидкостей. Особенности фильтрации нефти и					
газа. Скорость фильтрации и скорость					
движения. Классификация фильтрационных	4	0	6	16	
потоков.					
Тема 2. Законы фильтрации.					
Понятие о законе фильтрации. Виды законов					
фильтрации и их особенности. Опыты Дарси,					
линейный закон фильтрации. Нарушение					
закона фильтрации, основные причины.					
Обобщенная формула законов фильтрации.					
Критерии различимости законов фильтрации.					
Простейшие установившиеся					
фильтрационные потоки					
Тема 3. Установившееся плоскорадиальное	4	0	6	16	
движение несжимаемой жидкости и					
идеального газа при линейном законе					

	<u> </u>	1		
фильтрации.				
Схема и особенности движения. Вывод и				
анализ формул расхода (дебита скважин).				
Вывод и анализ законов распределения				
давления в пласте. Коэффициент				
продуктивности скважины.				
Тема 4. Гидродинамические исследования				
нефтяных и газовых скважин при				
установившихся режимах.				
Краткие сведения о технологии проведения				
исследований. Построение, анализ и				
обработка индикаторных диаграмм.				
Определение фильтрационных характеристик				
продуктивных пластов при обработке				
индикаторных диаграмм.				
Фильтрация неоднородных жидкостей				
Тема 5. Общие сведения о фильтрации	1			
неоднородных жидкостей.				
Неоднородные жидкости при добыче				
углеводородных полезных ископаемых:				
окклюзии, эмульсии, многофазные системы.				
условия образования, механизм течения.				
Характеристики многофазной фильтрации:				
фазовая насыщен-ность, фазовая и				
относительная проницаемости. Зависимости	6	0	6	16
относительная проницаемости. Зависимости относительной проницаемости от фазовой				
насыщенности при многофазной фильтрации.				
Тема 6. Установившееся движение				
нефтегазовой смеси.				
Разгазирование нефти в пласте: причины и				
последствия. Определение дебита скважины				
-				
по нефти и газу при фильтрации в пласте				
нефтегазовой смеси: подход Христиановича.				
Неустановившаяся фильтрация капельной				
жидкости				
Тема 7. Неустановившаяся фильтрация				
капельной жидкости в поровом пласте.				
Уравнение неразрывности,				
дифференциальное уравнение движения				
(пьезопроводности) - вывод, анализ и				
практическое применение. Решение				
уравнения пьезопроводности при работе	4	0	6	16
скважин с постоянными дебитами – основное				
уравнение упругого режима, анализ,				
практическое применение.				
Тема 8. Гидродинамические исследования				
скважин при неустановившихся режимах.				
Цели, задачи, назначение метода. Краткие				
сведения о технологии проведения				
исследований. Построение, анализ и				

обработка кривой восстановления давления.				
Определение фильтрационных характеристик				
удаленной и оценка пара-метров призабойной				
зон продуктивных пластов.				
Итого за 7й семестр	18	0	24	64
Итого по дисциплине	18	0	24	64

Примерная тематика практических занятий

No	Наименование темы практического (семинарского) занятия					
п.п.	паименование темы практического (семинарского) занятия					
1	Определение пористости и просветности фиктивного грунта.					
2	Законы фильтрации. Определение коэффициентов фильтрации и проницаемости.					
3	Определение дебитов и распределения давления нефтяных и газовых скважин.					
4	Обработка данных исследований нефтяных скважин при установившихся					
4	режимах.					
5	Обработка данных исследований газовых скважин при установившихся режимах.					
6	Определение характеристик многофазной фильтрации.					
7	Определение дебита скважин при фильтрации нефтегазовой смеси.					
8	Определение динамических пластовых давлений при работе скважин с					
8	постоянными дебитами.					
9	Обработка данных исследований нефтяных скважин при неустановившихся					
9	режимах.					

5. Организационно-педагогические условия

5.1. Образовательные технологии, используемые для формирования компетенций

Проведение лекционных занятий по дисциплине основывается на активном методе обучения, при котором учащиеся не пассивные слушатели, а активные участники занятия, отвечающие на вопросы преподавателя. Вопросы преподавателя нацелены на активизацию процессов усвоения материала, а также на развитие логического мышления. Преподаватель заранее намечает список вопросов, стимулирующих ассоциативное мышление и установление связей с ранее освоенным материалом.

Практические занятия проводятся на основе реализации метода обучения действием: определяются проблемные области, формируются группы. При проведении практических занятий преследуются следующие цели: применение знаний отдельных дисциплин и креативных методов для решения проблем и приятия решений; отработка у обучающихся навыков командной работы, межличностных коммуникаций и развитие лидерских качеств; закрепление основ теоретических знаний.

При проведении учебных занятий используются интерактивные лекции, групповые дискуссии, ролевые игры, тренинги и анализ ситуаций и имитационных моделей.

5.2. Методические указания для обучающихся по изучению дисциплины

При изучении дисциплины обучающимся целесообразно выполнять следующие рекомендации:

- 1. Изучение учебной дисциплины должно вестись систематически.
- 2.После изучения какого-либо раздела по учебнику или конспектным материалам рекомендуется по памяти воспроизвести основные термины, определения, понятия

раздела.

- 3.Особое внимание следует уделить выполнению отчетов по практическим занятиям, индивидуальным комплексным заданиям на самостоятельную работу.
- 4.Вся тематика вопросов, изучаемых самостоятельно, задается на лекциях преподавателем. Им же даются источники (в первую очередь вновь изданные в периодической научной литературе) для более детального понимания вопросов, озвученных на лекции.
- 6. Перечень учебно-методического и информационного обеспечения для самостоятельной работы обучающихся по дисциплине
- 6.1. Печатная учебно-методическая литература

Не используется

6.2. Электронная учебно-методическая литература

Вид литературы	Наименование	Ссылка на	Доступность (сеть
	разработки	информационны	Интернет /
		й ресурс	локальная сеть;
			авторизованный /
			авторизованный
			доступ)
Основная	Аитов И. С. Геология и	https://elib.pstu.ru	сеть Интернет;
литература	разработка	/Record/RULAN	авторизованный
	месторождений	RU-LAN-BOOK-	доступ
	Западной Сибири:	304019	
	учебное пособие.		
	Тюмень: ТИУ, 2022.		
	82 c.		
Основная	Гужель Ю. А.	https://elib.pstu.ru	сеть Интернет;
литература	Промысловая	/Record/RULAN	авторизованный
	подготовка нефти и	RU-LAN-BOOK-	доступ
	газа: учебное пособие.	345095	
	Благовещенск : АмГУ,		
	2021. 115 c.		
Дополнительная	Методы оценки	https://elib.pstu.ru	сеть Интернет;
литература	нефтегазонасыщеннос	/Record/RULAN	авторизованный
	ти пород-коллекторов	RU-LAN-BOOK-	доступ
	: учебное пособие.	304067	
	Тюмень: ТИУ, 2022.		
	86 c.		

6.3. Лицензионное и свободно распространяемое программное обеспечение, используемое при осуществлении образовательного процесса по дисциплине

Вид ПО	Наименование ПО			
Операционные системы	Windows 10 (подп. Azure Dev Tools for			
Операционные системы	Teaching)			
Офисные приложения.	Adobe Acrobat Reader DC. бесплатное ПО			

	просмотра PDF				
Odvova vo provincenskom	Microsoft Office Professional 2007. лиц.				
Офисные приложения.	42661567				
Прикладное программное обеспечение	WinRAR (лиц№ 879261.1493674)				
общего назначения	WIIIKAK (лицл≌ 8/9201.14930/4)				

6.4. Современные профессиональные базы данных и информационные справочные системы, используемые при осуществлении образовательного процесса по дисциплине

Наименование	Ссылка на информационный ресурс		
База данных Elsevier "Freedom Collection"	https://www.elsevier.com/		
База данных научной электронной библиотеки (eLIBRARY.RU)	https://elibrary.ru/		
Научная библиотека Пермского национального исследовательского политехнического университета	http://lib.pstu.ru/		
Электронно-библиотечеая система Лань	https://e.lanbook.com/		
Электронно-библиотечная система IPRbooks	http://www.iprbookshop.ru/		
Информационные ресурсы Сети КонсультантПлюс	http://www.consultant.ru/		

7. Материально-техническое обеспечение образовательного процесса по дисциплине

Вид занятий	Наименование необходимого основного оборудования и технических				
	средств обучения				
Лекция	Столы, стулья, стационарный презентационный комплекс				
Практическое	Столы, стулья, стационарный презентационный комплекс				
занятие	Столы, стулья, стационарный презентационный комплекс				

8. Фонд оценочных средств дисциплины

Описан в отдельном документе

Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

Пермский национальный исследовательский политехнический университет

Образовательный центр г.Когалым

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

для проведения промежуточной аттестации обучающихся по дисциплине "Физика и гидродинамика пластовых систем"

 Форма обучения
 Очная

 Уровень высшего образования
 Специалитет

 Общая трудоемкость (час., (ЗЕТ))
 144 (4)

 Специальность
 21.05.02
 Прикладная геология

Курс: 4 Семестр: 7

Экзамен: 7 семестр

Фонд оценочных средств (ФОС) для проведения промежуточной аттестации обучающихся по дисциплине "Физика и гидродинамика пластовых систем" является частью (приложением) к рабочей программе дисциплины (РПД). ФОС для проведения промежуточной аттестации обучающихся по дисциплине разработан в соответствии с общей частью фонда оценочных средств для проведения промежуточной аттестации основной образовательной программы, которая устанавливает систему оценивания результатов промежуточной аттестации и критерии выставления оценок. ФОС для проведения промежуточной аттестации обучающихся по дисциплине устанавливает формы и процедуры текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине.

1. Перечень контролируемых результатов обучения по дисциплине, объекты оценивания и виды контроля

Согласно РПД освоение учебного материала дисциплины "Физика и гидродинамика пластовых систем" запланировано в течение одного семестра (7 семестра учебного плана).

Предусмотрены аудиторные лекционные и практические занятия, а также самостоятельная работа студентов. В рамках освоения учебного материала дисциплины формируется компоненты компетенций знать, уметь, владеть, указанные в РПД, которые выступают в качестве контролируемых результатов обучения по дисциплине.

Контроль уровня усвоенных знаний, освоенных умений и приобретенных владений осуществляется в рамках текущего, рубежного и промежуточного контроля при изучении теоретического материала и в ходе практических занятий, а также на экзамене (табл. 1.1)

Таблица 1.1. Перечень контролируемых результатов обучения по дисциплине

Контролируемые результаты обучения по	Вид контроля				
дисциплине (ЗУВы)	Текущий		Рубежный		Итоговый
	С	ТО	ОПР	T	Экзамен
Усвоеннь	іе знани	Я			
3.1. Знает методы решения прямой и обратной					ТВ
задач подземной гидромеханики	С	TO	ОПР	T	П3
					КЗ
3.2. Знает способы определения дебитов					ТВ
скважин при существовании линейного и	С	ТО	ОПР	Т	ПЗ
нелинейного законов фильтрации пластовых				1	К3
флюидов					RS
3.3. Знает основные положения руководящих					TB
документов, регламентирующих проведение	C	TO	ОПР	T	П3
различных методов исследования скважин					КЗ
Освоенны	е умени	Я			
У.1. Умеет использовать результаты					
интерпретации гидродинамических					TB
исследований нефтяных и газовых скважин	C	TO	ОПР	T	П3
для решения задач геологии месторождений					КЗ
нефти и газа					
У.2. Умеет выполнять анализ					ТВ
гидродинамических параметров продуктивных	С	ТО	ОПР	Т	ПЗ
пластов, полученных при реализации различых	Č	10		*	К3
методов исследования скважин					1.5

У.3. Умеет анализировать соответствие данных о проведении гидродинамических исследований скважин требованиям отраслевых и локальных нормативных документов	С	ТО	ОПР	Т	ТВ ПЗ КЗ
Приобретенн	Приобретенные владения				
В.1. Владеет навыками интерпретации					ТВ
материалов гидродинамических исследований	C	TO	ОПР	T	П3
нефтяных и газовых скважин					КЗ
В.2. Владеет навыками разработки					TB
предложений по управлению продуктивностью	C	TO	ОПР	T	П3
нефтяных и газовых скважин					КЗ
В.3. Владеет навыками анализа применимости					ТВ
существующих методов решения прямой и	C	TO	ОПР	T	П3
обратной задач подземной гидромеханики					КЗ

C - собеседование по теме; TO - коллоквиум (теоретический опрос); K3 - кейс-задача (индивидуальное задание); $O\Pi P$ - отчет по лабораторной работе; $O\Pi P$ - отчет по практической работе; T/KP - рубежное тестирование (контрольная работа); TB - теоретический вопрос; $\Pi 3$ - практическое задание; K3 - комплексное задание экзамена.

Итоговой оценкой достижения результатов обучения по дисциплине является промежуточная аттестация в форме экзамена, проводимая с учетом результатов текущего и рубежного контроля.

2. Виды контроля, типовые контрольные задания и шкалы оценивания результатов обучения

Текущий контроль успеваемости имеет целью обеспечение максимальной эффективности учебного процесса, управление процессом формирования заданных компетенций обучающихся, повышение мотивации к учебе и предусматривает оценивание хода освоения дисциплины. В соответствии с "Положением о проведении текущего контроля успеваемости и промежуточной аттестации обучающихся по образовательным программам высшего образования - программам бакалавриата, специалитета и магистратуры в ПНИПУ" предусмотрены следующие виды и периодичность текущего контроля успеваемости обучающихся:

- входной контроль с целью контроля исходного уровня подготовленности обучающегося и его соответствия предъявляемым требованиям для изучения данной дисциплины:
- текущий контроль усвоения материала (уровня освоения компонента "знать" заданных компетенций) на каждом аудиторном занятии и контроль посещаемости лекционных занятий;
- промежуточный и рубежный контроль освоения обучающимися отдельных компонентов "знать" и "уметь" заданных компетенций путем компьютерного или бланочного тестирования, контрольных опросов, контрольных работ (индивидуальных домашних заданий), рефератов, эссе и т.д.
- рубежный контроль по дисциплине, проводимый на следующей неделе после прохождения каждого теоретического раздела дисциплины, и промежуточный, осуществляемый во время каждого контрольного мероприятия внутри тематического раздела дисциплины;
- межсессионная аттестация с целью единовременного подведения итогов текущей успеваемости не менее одного раза в семестр по всем дисциплинам для каждого направления подготовки (специальности), курса, группы;

- контроль остаточных знаний.

2.1. Текущий контроль усвоения материала

Текущий контроль усвоения материала в форме собеседования или выборочного теоретического опроса студентов проводится по каждой теме. Результаты по 4-балльной шкале оценивания заносятся в книжку преподавателя и учитываются в виде интегральной оценки при проведении промежуточной аттестации.

2.2. Рубежный контроль

Рубежный контроль для комплексного оценивания усвоенных знаний, освоенных умений и приобретенных владений (табл. 1.1) проводится в форме тестирования или проверки рубежных контрольных работ после изучения каждого тематического модуля учебной лисциплины.

2.2.1 Защита отчетов по практическим занятиям

Всего запланировано 9 практических занятий. Типовые темы практических занятий приведены в РПД.

2.2.2. Рубежное тестирование

Запланировано 4 рубежных тестирования после освоения студентами каждого модуля дисциплины:

- Основы теории фильтрации;
- Простейшие установившиеся фильтрационные потоки;
- Фильтрация неоднородных жидкостей;
- Неустановившаяся фильтрация капельной жидкости.

Типовые тестовые задания для первого модуля:

- Как влияет рост скорости потока на число Рейнольдса?
- Укажите размерность давления в системе единиц СИ:
- Что понимается под термином «пористая среда»?

Типовые тестовые задания для второго модуля:

- Что понимается под термином «идеальный грунт»?
- Что понимается под термином «пористость»?
- Какова размерность пористости?

Типовые тестовые задания для третьего модуля:

- Функция Лейбензона в общем виде:
- Какую форму имеет поверхность равного давления при абсолютном покое жидкости?
- Какое влияние оказывает температура на вязкость жидкостей?

Типовые тестовые задания для четвертого модуля:

- Какова в СИ единица измерения динамического коэффициента вязкости?
- Какие флюиды называют «Ньютоновскими жидкостями»?
- Что понимается под термином «эквивалентный диаметр»?

Типовые шкалы и критерии оценки результатов рубежной контрольной работы приведены в общей части ФОС образовательной программы.

2.3. Промежуточная аттестация (итоговый контроль по дисциплине)

Допуск к промежуточной аттестации осуществляется по результатам текущего и рубежного контроля. Условиями допуска являются положительная интегральная оценка по

результатам текущего и рубежного контроля, а также успешная защита отчетов по всем практическим занятиям.

Промежуточная аттестация в форме экзамена по дисциплине проводится по билетам. Билет содержит теоретический вопрос для проверки усвоенных знаний, практическое задание для проверки освоенных умений и комплексное задание для контроля уровня приобретенных владений всех заявленных компетенций.

Билет формируется таким образом, чтобы в него попали теоретические вопросы и практические задания, контролирующие уровень сформированности всех заявленных компетенций. Форма билета представлена в общей части ФОС образовательной программы.

2.3.1. Типовые задания для промежуточной аттестации по дисциплине

Типовые теоретические вопросы для проверки знаний на экзамене в 7 семестре:

- Силы, действующие в пластовых системах. Понятие о режиме залежи.
- Понятие о законе фильтрации. Линейный закон фильтрации.
- Границы применимости закона Дарси.

Типовые практические задания для проверки умений на экзамене в 7 семестре:

- Обработка результатов исследований скважин при установившихся режимах фильтрации.
- Обработка результатов исследований газовых скважин при установившихся законах фильтрации
 - Обработка индикаторной диаграммы

Типовые комплексные задания для проверки владений на экзамене в 7 семестре:

- Скорость движения и скорость фильтрации жидкости
- Определение фильтрационных параметров пласта методом восстановления давления
- Плоскорадиальное движение жидкости. Расход, распределение давления вдоль линий тока.

Полный перечень теоретических вопросов и практических заданий в форме утвержденного комплекта билетов хранится на выпускающей кафедре.

2.3.2. Шкалы оценивания результатов обучения на экзамене

Оценка результатов обучения по дисциплине в форме оценки уровня сформированности компонентов "знать", "уметь" и "владеть" заявленных компетенций проводится по 4-х балльной шкале оценивания путем выборочного контроля в процессе промежуточной аттестации.

Типовые шкала и критерии оценки результатов обучения в процессе промежуточной аттестации для компонентов "знать", "уметь" и "владеть" приведены в общей части ФОС образовательной программы.

3. Критерии оценивания уровня сформированности компонентов и компетенций

3.1 Оценка уровня сформированности компонентов компетенций

При оценке уровня сформированности компетенций путем выборочного контроля в процессе промежуточной аттестации считается, что полученная оценка за компонент проверяемой компетенции обобщается на соответствующий компонент всех компетенций, формируемых в рамках данной учебной дисциплины.

Типовые критерии и шкалы оценивания уровня сформированности компонентов компетенций приведены в общей части ФОС образовательной программы.

3.2. Оценка уровня сформированности компетенций

Общая оценка уровня сформированности всех компетенций проводится путем агрегирования оценок, полученных студентом за каждый компонент формируемых компетенций. Все результаты контроля заносятся в оценочный лист и заполняются преподавателем по итогам промежуточной аттестации с учетом результатов текущего и рубежного контроля в виде интегральной оценки по 4-х балльной шкале.

Форма оценочного листа и требования к его заполнению приведены в общей части ФОС образовательной программы.

При формировании итоговой оценки промежуточной аттестации используются типовые критерии, приведенные в общей части ФОС образовательной программы.

Физика и гидродинамика пластовых систем

Правильный ответ	Содержание вопроса	Компете нция
0,26 д.ед.	Определить пористость фиктивного грунта, если угол укладки частиц θ = 60^{0}	ПКО-4
0,92	Найти изменение перепада давления $\frac{\Delta P_2}{\Delta P_1}$ при	ПКО-4
	увеличении радиуса скважины вдвое, при котором дебит остается прежним. Рассмотреть фильтрацию по закону Дарси. Начальный радиус скважины	
	r_c =10 см, расстояние до контура питания r_κ =500 м.	
Водонапорный, упруговодонапорный, газонапорный.	Перечислите природные режимы вытеснения для нефтяных залежей	ПКО-4
отношение фазовой проницаемости этой среды для данной фазы к абсолютной	Что такое абсолютная проницаемость?	ПКО-4
уменьшается	Вязкость жидкости при увеличении температуры	ПКО-4
59,5 м ³ /сут	Каким должен быть расход жидкости в нагнетательной скважине, если необходимо, чтобы давление в скважине поддерживалось в процессе закачки на ΔP =1 МПа выше давления, установившегося в пласте на расстоянии r_{κ} =200 м от скважины. Имеет место линейный закон фильтрации. Исходные данные: вязкость μ =1,5 мПа·с, проницаемость k =0,125 Д, радиус скважины r_{c} =10 см, толщина пласта h =10 м.	ОПК-10
64,47 м ³ /с	Определить объемный дебит совершенной газовой скважины, считая, что фильтрация происходит по закону Дарси, если толщина пласта 15 м, коэффициент проницаемости пласта 0,25 мкм², динамическая вязкость газа 0,01 мПа·с, плотность газа в нормальных условиях 0,65 кг/м³, радиус скважины 10 см, радиус контура питания 850 м, давление на забое скважины 11 МПа, на контуре питания 13 МПа.	ОПК-10
количество покоящейся массы, заключённой в единице объёма	Плотность – это?	ОПК-10
цилиндрическая горная выработка, сооружаемая без доступа в неё человека и имеющая диаметр во много раз меньше длины	Скважина – это?	ОПК-10
Отношение п площади пор в сечении к общей площади сечения	Что такое просветность?	ОПК-10

0,03 Д	Определите величину проницаемости к пористой среды (в дарси), если известно: коэффициент фильтрации с=0,3×10 ⁻⁴ см/с, кинематический коэффициент вязкости жидкости 1 сСт;	ОПК-11
0,00153 м/с	Определить коэффициент фильтрации, если известно, что площадь поперечного сечения образца горной породы $F=5~\text{cm}^2$, длина образца $L=2~\text{m}$, разность давлений на входе жидкости в образец и на выходе $\Delta P=0,3~\text{M}\Pi a$, плотность жидкости $\rho=700~\text{кг/m}^3$,	ОПК-11
значительное скопление нефти и газа	Залежь – это?	ОПК-11
разность между давлением на контуре питания и на забое скважины.	Депрессия – это?	ОПК-11
суточная производительность скважины; выражается в объёмных единицах (м³/сут – газ) или в весовых (т/сут – нефть, вода).	Дебит скважины – это?	ОПК-11